High quality and trust worthy chemical supplier | Orachemicals.in


If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net

Overview of Nano diamond The nano-diamonds, also known as diamond nanoparticles, are diamonds smaller than 1 micron in diameter and can be made from an impact event such an explosion or meteorite strike. Due to its low cost, ease of large-scale synthetic, surface functionalization, high biocompatibility and easy synthesis, nano diamond has been extensively studied in the electronic, biological and quantum engineering areas.
Structure of nanodiamond
It is important to consider three main aspects of the structure and function of diamond nanoparticles. The shape of diamond nuclei was determined using diffraction experiments. Diamond nanoparticles are surrounded by a diamond cage made mainly from carbon. The core structure is very similar that of diamond. However the diamond nanoparticles’ surface is almost identical to graphite. A recent study revealed that the surface is mainly made of carbon. However, it also contains phenol, pirole, sulfonic, and epoxy groups. Sometimes, there are defects in the structure of diamond-nanoparticles. A recent study has shown that the size of diamond nuclei decreases the frequency of nitrogen-vacancy center.
Production methods for nano-diamond
Other than the explosion, other synthesis methods include hydrothermal, ion bombing, laser bombardment (microwave plasma chemical vapor deposit), ultrasonic and electrochemical. High-purity nanoparticles can also be produced by high-pressure and high-temperature graphite C3N4 decomposition. For commercial production of Nano Diamonds, the industry standard is detonation-synthesis. The most common explosive used to produce them is a mixture trinitrotoluene/hexose or monosaccharide.
Detonation is usually performed in a sealed chamber of stainless steel that is oxygen-free. It produces a mix of Nano diamonds as well as other graphite compound ranging from 5 to 10 nm. Nano diamonds can only be created by detonation synthesis if there is no oxygen. This happens at temperatures above 3000K and pressures over 15 GPa. To prevent the formation nanoparticles of diamond, the oxidation system must be rapidly cooled to increase the production of Nano-diamonds. This is because diamond is the most stable phase in such conditions. Detonation synthesizers use liquid and gas coolants like water, water-based mousse and ice. Detonation results in synthesis, which is a mixture nano diamond particles and graphite carbon forms. Therefore, thorough cleaning must be done to remove all impurities. For removal of SP2 carbon and other metal impurities, either gaseous or solution phase Nitric Acid Oxidation is most commonly used.
Application prospect of Nano diamond
Nano diamond’s strength, hardness, thermal conductivity and biocompatibility are unique, making it a popular choice for precision polishing, lubrication and high-performance metal matrix composites.
The Nano diamond material is an extremely versatile material, with many connotations and rich characteristics. This is a field that presents great opportunities and challenges. Nano diamond is a product of years of research and production. This material can be used to produce raw materials, defense industry, precision polishing industry, biomedicine, electronic, chemical, and other national economies. I believe there will be a large-scale application of Nano diamond in many industries in the near future.
Nano diamond supplier
(aka. Technology Co. Ltd. (aka. For the most recent price of Nano diamond, please contact us.