High quality and trust worthy chemical supplier | Orachemicals.in

Newsorachemicals

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Gallium nitride (GaN) is a wide gap semiconductor materials, widely used in multiple fields due to its excellent physical, electrical, and optical properties.

1.Semiconductor lighting

Gallium nitride is the most widely used in the field of semiconductor lighting. Due to its high transparency, high reflectivity, and high luminescence, gallium nitride materials have great advantages in manufacturing high-performance LED lamps. Compared with traditional incandescent and fluorescent lamp, LED lamps have higher luminous efficiency and longer service life, making them widely used in indoor and outdoor lighting, displays, automotive lighting, and other fields.

In semiconductor lighting, gallium nitride materials are mainly used as substrates for LED chips. LED chips are the main core components of LED lights, and their luminous efficiency and service life directly determine the performance of the entire LED light. As a substrate material, Gallium nitride has advantages such as high thermal conductivity, high stability, and high chemical stability. It can improve LED chips’ luminous efficiency and stability, reduce manufacturing costs, and produce various shapes and specifications of LED products.

2.High-temperature electronic devices

Gallium nitride is also widely used in the field of high-temperature electronic devices. Due to its electrical properties, such as high breakdown electric field and high electron saturation rate, gallium nitride can be used to produce electronic devices that operate in high-temperature environments.

In the aerospace field, due to the harsh working environment, it is necessary to use electronic devices that can work stably in high-temperature environments. Gallium nitride, as a high-temperature semiconductor material, is mainly used in manufacturing electronic devices such as transistors and field-effect transistors in flight control and fire control systems. In addition, in the field of power transmission and distribution, gallium nitride materials can also be used to manufacture high-temperature electronic devices such as power electronic switches and converters, improving the efficiency and stability of equipment.

3.Solar cells

The application of gallium nitride in solar cells has also received great attention. Due to its high transparency and electron saturation speed, high-efficiency solar cells can be manufactured.

Traditional solar cells mainly use silicon as the material. Although the manufacturing cost of silicon solar cells is low, their bandgap width is narrow (about 1.1eV), and their photoelectric conversion efficiency is limited. Gallium nitride solar cells have a wider energy gap width (about 2.3eV), which can absorb more sunlight and have higher photoelectric conversion efficiency. In addition, the manufacturing cost of gallium nitride solar cells is relatively low, which can provide the same photoelectric conversion efficiency at a lower price, thus having great potential in the photovoltaic industry.

4.Detectors

Gallium nitride is also widely used in the field of detectors. Due to their high transparency and reactivity, high-efficiency detectors such as spectral and chemical sensors can be manufactured.

In the security field, efficient X-ray detectors can be manufactured using gallium nitride, which can be used for security checks in airports and important buildings. In addition, in environmental monitoring, gallium nitride materials can also be used to manufacture detectors, such as gas and photochemical sensors, for detecting environmental parameters such as air quality and pollutants.

5.Other application areas

In addition to the abovementioned application, gallium nitride is also widely used in other fields. For example, gallium nitride can be used to manufacture microwave and high-frequency devices, such as high electron mobility transistors (HEMTs) and microwave monolithic integrated circuits (MMICs), for use in fields such as radar, communication, and electronic countermeasures. In addition, gallium nitride can also be used to make deep ultraviolet optoelectronic devices and high-power lasers.